

ОТЧЕТ

по этапу № 1 «Анализ современного состояния оценки органотоксичности лекарственных веществ, элиминация которых определяется транспортерами органических анионов» (I квартал 2018 года)

НИР «Разработка методов определения и критериев оценки активности экспрессии генов-транспортеров лекарственных веществ»

Москва 2018

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ за I квартал 2018 года

Цель исследования: анализ состояния вопроса о наиболее значимых транспортерах ЛС.

Анализ литературных данных о наиболее значимых транспортерах органических катионов

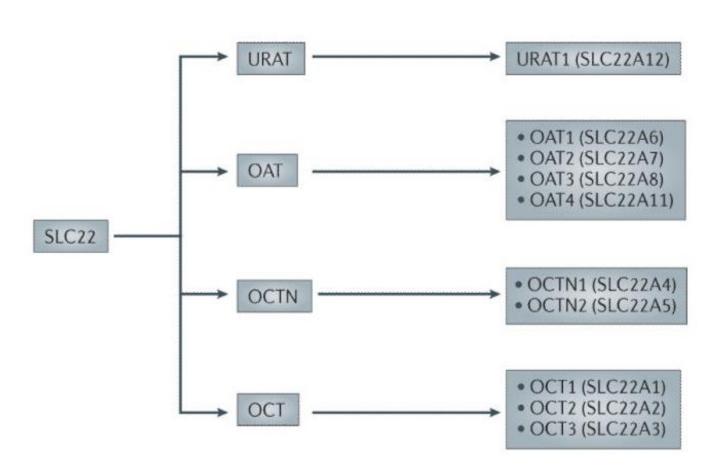
Оценка лекарственных препаратов как субстратов транспортеров органических катионов и их роли в развитии токсических эффектов

Оценка генетического профиля клеточной культуры HepG2

Актуальность темы обусловлена:

Важная роль в элиминации множества жизненно важных лекарственных препаратов

Участвуют в выведении лекарств и их метаболитов между кровью и внутриклеточной жидкостью




Активность транспортеров может служить критерием оценки токсичности (главным образом нефро- и гепатотоксичности) некоторых групп ЛС, в частности β-лактамов из-за накопления их в клетках печени и почек, где повышена экспрессия геновтранспортеров

Классификация транспортеров семейства SLC22 (по *S. Nigam*)

OCT1 (organic cation transporter 1) (SLC22A1)

- Экспрессируется главным образом в печени, также расположен на базолатеральной мембране энтероцитов тонкой кишки, в клетках почек, и в меньшей степени в некоторых нейронах, сердце, скелетных мышцах, легких, опухолевых клетках и базофильных гранулоцитах.
- Обеспечивает проникновение в гепатоциты из крови ЛС катионной природы, эндогенных соединений.
- Важный клинический субстрат метформин.
- Активность транспортера ОСТ1 характеризуется широкой межиндивидуальной вариабельностью.

Название полиморфизма	rs12208357
Локализация в гене	Экзон 1
Локализация в белке	большая внеклеточная петля
Изменение аминокислотного состава белка	замена аригинина на цистеин
Частота встречаемости	~7,2% у европейцев
Влияние на активность транспортера	Уменьшение активности

Название полиморфизма	rs72552763
Локализация в гене	Экзон 7
Локализация в белке	M420del
Изменение аминокислотного состава белка	Делеция метионина
Частота встречаемости	18,5% у европейцев и 5% афроамериканцев
Влияние на активность транспортера	Понижение активности

Название полиморфизма	rs34130495
Локализация в гене	Экзон 7
Локализация в белке	Цепочка высококонсервативных аминокислот
Изменение аминокислотного состава белка	замена глицина на серин
Частота встречаемости	<1% у европейцев и афроамериканцев
Влияние на активность транспортера	Полная потеря активности

OCT2 (organic cation transporter 2) (SLC22A2)

- Экспрессируется главным образом в почках, на базолатеральной мембране проксимальных канальцевых клеток. Не экспрессируется в печени, но обнаруживается в тонком кишечнике, трахее и бронхах, коже, плаценте, мозге и сосудистом сплетении и внутреннем ухе.
- Участвует в выведении в мочу ЛС катионной природы, эндогенных соединений.
- Важными клиническими субстратами являются метформин и препараты платины. Генетические полиморфизмы ОСТ2 связаны с измененной фармакокинетикой метформина и нефро- и ототоксичностью цисплатина.
- Активность транспортера ОСТ2 характеризуется широкой межиндивидуальной вариабельностью.

Название полиморфизма	rs316019
Локализация в гене	Экзон 4
Локализация в белке	270я аминокислота
Изменение аминокислотного состава белка	Заметна аланина на серин
Частота встречаемости	~10-15% у разных этнических групп
Влияние на активность транспортера	Понижение активности

OCT3 (organic cation transporter 3) (SLC22A3)

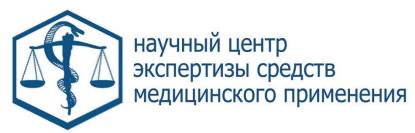
- Полиспецифический транспортер, но в печени и почках он уступает по важности ОСТ1 и ОСТ2, соответственно. ОСТ3 экспрессируется в тканях головного мозга: в гиппокампе, зрительной коре, гипоталамусе и так далее; он, по-видимому, имеет некоторое значение при воздействии ЛС на сердечную ткань.
- ОСТЗ может быть важным при пероральном всасывании, обратном захвате нейротрансмиттеров в головном мозге, высвобождении ацетилхолина, выделении гистамина из базофилов.

SNP	Замещение нуклеотида	Аминокислотная замена	Частота встречаемости
rs68187715	C131T	T44M	0,6% у европейцев и афроамериканцев
rs8187717	G346T	A116S	~2% у афроамериканцев
rs8187725	C1199T	T400I	0,5% у европейцев

Лекарственные средства - субстраты ОСТ

• Метформин

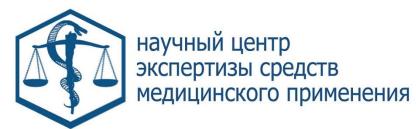
$$\begin{array}{ccc} & & & \text{NH} & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\$$


• Цисплатин

$$CI_{N_1}$$
 $PT \longrightarrow NH_3$ OCT2

• Оксалиплатин

• Ацикловир


• Ганцикловир

Лекарственные средства - субстраты ОСТ

• Ламивудин

• Циметидин

Ингибиторы ОСТ

ОСТ1: хинин, хинидин, дизопирамид, атропин, празозин.

OCT2: циметидин, цетиризин, хинидин, рифампицин, ритонавир.

ОСТ3: циметидин, хинидин, рифампицин, празозин, прогестерон, θ -эстрадиол.

Рекомендации EMA, FDA, MHLW для производителей ЛС*

- Согласно рекомендациям FDA, если почечный клиренс изучаемого ЛС составляет не менее 25%, следует проверить ЛС на предмет сродства к транспортерам. Аналогичного подхода придерживается Министерство здравоохранения, труда и благосостояния Японии.** Европейское медицинское агенство оставляет решение о величине почечного клиренса на усмотрение каждой отдельной страны.***
- EMA, FDA, MHLW производят обязательную проверку возможного ингибирования транспортеров изучаемым ЛС на моделях клеточных культур, с повышенной экспрессией транспортеров.
- Рекомендованные клеточные линии: НЕК293, MDCK.

www.impactjournals.com/oncotarget/

Oncotarget, 2018, Vol. 9, (No. 1), pp: 743-754

Research Paper

Organic cation transporter 3 mediates cisplatin cross-resistance in hepatoma cells

Результаты исследования на культуре гепатомы CpR, родственной HepG2, показали, что снижение уровня экспрессии ОСТ3 является причиной возникновения химиорезистентности к цисплатину.

По мнению авторов исследования ОСТЗ может выступать в качестве нового прогностического маркера для улучшения прогноза при химиотерапии препаратами платины.

Оценка генетического профиля клеточной культуры HepG2

Контаминация клеточных культур

• 15-25% человеческих клеточных линий, используемых в исследованиях, неправильно идентифицированы или контаминированы. Часто это приводит к получению недостоверных результатов.

Причины контаминации

Химические

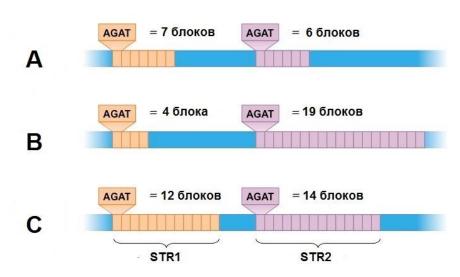
- эндотоксины
- пластик
- ионы металлов

Биологические

- микоплазмы
- вирусы
- бактерии
- грибы
- кросс-контаминация

Методы проверки биологической контаминации

- > Кариотипирование
- > Анализ изоферментов
- > Иммунохимические методы
- ➤ Полиморфизм STR-локусов


Методы проверки биологической контаминации

- Кариотипирование
- Анализ изоферментов
- Иммунохимические методы
- > Полиморфизм STR-локусов золотой стандарт современной молекулярно-генетической идентификации клеточных линий

STR-локусы (Short Tandem Repeats) - короткие (<10п.о.) участки в ядерной ДНК и ДНК органелл, состоящие из тандемно повторяющихся мономеров и образующие поля менее 1000 п.о.

Располагаются в некодируемых областях хромосом. Обладают высокой степенью полиморфизма, что позволяет отличить по их составу даже разные пассажи одной и той же клеточной линии.

Схема проведения STR-анализа

- 1. Выделение ДНК из клеток
- 2. Проведение полимеразной цепной реакции со специфическими флуорецентными праймерами
- 3. Капиллярный электрофорез ПЦР-продуктов
- 4. Анализ полученных результатов по базе ATCC (American Type Cell Culture)

Протокол анализа

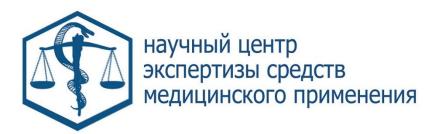
- 1. На анализ был отправлен образец клеточной культуры HepG2 в количестве ~100 тысяч клеток
- 2. Экстракция ДНК проводилась с использованием реагента для ПЦР-совместимого лизиса COrDIS Sprint (ООО «ГОРДИЗ»)
- 3. Для анализа STR-маркеров использовалась тест-система COrDIS Plus (ООО «ГОРДИЗ», Регистрационное удостоверение Росздравнадзора № ФСР2012/13548 от 23.01.2017)
- 4. Для полученных генотипов проводился поиск по референсной базе клеточных линий ATCC*

Результаты анализа

	Генотип для поиска	
Название клеточной линии		HepG2
D5S818	11,12	11,12
D13S317	9,13	9,13
D7S820	8,10	10,10
D16S539	12,13	12,13
vWA	17,17	17,17
TH01	9,9	9,9
AMEL	X,Y	X,Y
TPOX	8,9	8,9
CSF1PO	10,11	10,11
Совпадение	94%	

Нормативные требования АТСС

100% - образец идентичен референсному


>80% - образец считается родственным референсному (произошел от общей линии-предшественника)

<80% - образец не может достоверно считаться родственным

Публикационная активность в I квартале 2018 года

В редакцию журнала «Безопасность и риск фармакотерапии» направлена научная статья «Фармакогенетика основных представителей транспортеров органических катионов» авторы: В.А. Евтеев, Р.Е. Казаков, Е.Ю. Демченкова, О.А. Муслимова, Е.Ю. Демченкова

Выводы

- •Несмотря на то, что исследования по фармакогенетике транспортеров органических катионов стали проводится относительно недавно, уже сейчас известно, что у представителей этого семейства имеются клинически значимые полиморфизмы. С каждым годом увеличивается количество работ по фармакогенетике транспортеров органических катионов в различных этнических группах.
- •ОСТ характеризуются широким, перекрывающимся с другими транспортерами, спектром субстратов и ингибиторов с большим диапазоном сродства, что делает их изучение актуальным.
- •Токсические эффекты могут развиваться при конкурировании за транспортер, при ингибировании его работы, а также при превышении поступления токсичного вещества в клетку над его выведением.
- •При совпадении 94% предлагаемая для использования клеточная линия HepG2 полностью соответствует требованиям ATCC по генетической чистоте.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!